Identifying Sustainable Wood Sources

Wood is generally considered as a sustainable construction material. However, there are not sufficient wood resources in many countries or regions, especially those short of land resources. Therefore, it is imperative to determine how to choose sustainable importing sources in order to improve the sustainability performance of using wood. By Li Shenghan and Wu Huanyu, Shenzhen University, and Ding Zhikun, The University of Adelaide

 

Sustainability in terms of the environment implies a natural resource balance. The core principle of ‘sustainability’ is described as a ‘meeting the needs of the current generation without compromising the ability of future generation to meet their needs’, indicating a precautionary approach to those activities that effect the environment to prevent irreparable damage. 

 

However, construction is not an environmentally friendly process by nature, and it has become one essential part of sustainable issues. 

 

Resource utilisation, the material manufacturing process, material transportation, and disposal of waste materials can potentially cause environmental problems. Greenhouse gas emissions, energy consumption, and depletion of resources are important factors that influence our built-environment. 

 

Sustainable construction must meet the goals for reducing energy consumption and greenhouse gas emissions, and using more renewable materials.

 

Since the 1990s, the issues of sustainable buildings and sustainable building materials have been paid much attention to by scholars and governments around the world. 

 

Several green policies for green buildings and green materials have been proposed to address these issues. Within these policies, wood building structures are highly encouraged to be applied as a green building structures, as wood is regarded as an ecological green material, and it requires minimum treatment as well as minimum consumption of energy during the life cycle from the production to final disposal. 

 

There are several benefits of using wood material, one of which is carbon storage. Wood material contains 50 percent carbon during its growth, absorbing carbon dioxide in the air. Therefore, the more wood materials are used, the more carbon is stored, thus reducing the global warming effect.

 

In addition, the effect of wood biomass substitution can decrease greenhouse gas emissions. It had been suggested that ‘exchanging coal for biomass wastes and residues is one of the lowest-cost, nearest-term options for reducing fossil carbon dioxide emissions at existing power plants’. 

 

Research into fuel substitution in Sweden found that ‘the highest cross-price elastic ties can be found between wood fuel and non-gaseous fossil fuels (oil and coal), reflecting a relatively large substitution possibility’. In consequence, the use of wood material has a great advantage for reducing environmental problems.

 

However, wood resources are not sufficient in many land-limited countries or regions like Japan, South Korea, Taiwan, and so on. The domestic raw materials and products of wood can hardly meet the local demands from the construction industry, which requires a massive volume of wood materials. Therefore, the building construction industry in these countries or regions seeks to import wood from overseas. 

 

For instance, it is reported that approximately eight million to ten million cubic metres of wood are consumed in Taiwan every year, while the domestic supply amount of wood in Taiwan is only around fifty thousand cubic metres. 

 

The degree of self-sufficiency of wood in Taiwan is less than one percent, and almost 99 percent of wood used in the construction industry in Taiwan is imported from foreign regions, such as the US, Canada, Sweden, New Zealand, Australia, Brazil, China, and Malaysia. Hence, the identification of sustainable wood importing sources for these counties or regions plays a critical role in pursuing the sustainability of wood used in building construction.

 

Significant research has been conducted to identify sustainable building material resources in the construction industry worldwide. For example, Koch analysed national data from the 1970s that stated that the environmental impact of wood structures was lower due to the use of wood in the US; in New Zealand, Buchanan and Honey indicated that the energy use and carbon dioxide emissions of wood structures are both lower than concrete structures. 

 

Borjesson and Gustavsson reported similar findings in Sweden by evaluating the effects of land use and end of life changes of materials. Upton et al. further suggested that greenhouse gas emissions associated with wood-based houses were 20–50 percent lower than those associated with comparable houses employing steel-based building systems. 

 

Peterson and Solberg indicated the sustainability of wood used in construction depends on how material waste has been managed and how forest carbon flows have been considered.

 

Architects of Guardigli, Monari, and Bragadin developed a design model of mid-size green buildings of wood and concrete structures, finding that with European LCA database, wood design is much more environmentally friendly. 

 

Besides, wood is traditionally regarded for low-rise building construction, but as for recent research related to wood construction, Skullestad, Bohne and Lohne investigated greenhouse gas emissions of high-rise timber buildings from three to 21 storeys compared with reinforced concrete structures. The results showed that carbon dioxide emissions reduction obtained by substituting a RC structure with a timber structure per sqm varies from different storeys.

 

In Taiwan, sustainability assessment of wood and wood products also attracted research efforts. Li and Xie investigated building professionals’ attitudes towards the use of wood in building design in Taiwan and found professionals including architects, engineers, and interior designers had positive viewpoints of wood construction in Taiwan. 

 

They considered wood-framed buildings would be the future trend of sustainable construction in low-rise buildings. As for study of environmental impacts of wood structures, Tu examined 57 reference houses of wooden platform constructions in Taiwan and estimated the average amounts of materials in the buildings. He found that carbon dioxide released in reinforced concrete structures and steel structures is 4.2 times and 3.6 times more than in wood structures, respectively. 

 

Previous studies mainly focus on the sustainability assessment of wood structures or wood used in construction by comparing them with other structure forms or materials such as concrete and steel. However, these studies overlooked the significance of the sources of imported wood in their sustainability assessment. 

 

The sustainability performance of wood imported from different sources would vary dramatically due to the differences in the wood production process, energy structure, and transportation distance among these imported wood sources.

 

This being the case, the influence of imported wood from different regions should be taken into consideration when conducting sustainability assessment for wood used in construction in import-dominated cases. 

 

As wood importation is a cross-regional mobility issue of materials, it involves various energy supply systems, equipment, manufacturing processes, transportation systems, and different types of efficient operations. 

 

A specialised assessment process is needed to address this issue by conducting a literature review, an actual investigation, and forming proper assumptions. 

 

Taiwan, a typical region where the wood used in the construction industry largely relies on the import market, is chosen as the case study. 

 

In this study, wood consumed in construction in Taiwan is manufactured overseas and then transported to Taiwan. The imported wood regions include the US (Pacific Northwest, Southeast, Inland Northwest, and Northeast), Canada (West and East), China (Northeast and Southwest), Malaysia, Sweden, Russia, Brazil, Australia, and New Zealand. 

Five main lifecycle stages of wood are considered in the assessment:

•Wood harvesting. The first step in the wood industry is wood harvesting. This step is generally called pre-processed and includes the following processes: felling wood, skidding wood to the landing area, and debarking. Only a small amount of energy consumption is needed, because wood harvesting (logging) requires simple mechanical tools such as electric saw.

•Transporting wood from forest region to sawmill. The harvested wood is transported from forest region to sawmill. In order to reduce the capital in transportation related to costs, most sawmills are built to avoid long distance from forest logging area. However, different regions have their own conditions, and, therefore, assumptions will be made according to the case in the following analysis.

•Manufacturing of wood in sawmill. This step indicates how the wood material is manufactured and processed in sawmill. As for energy use, the predominant use of electricity reflects a proportionally larger use of mechanical processes, such as sawmilling, chipping, planting, and peeling over processes, which need heat for processes such as drying, gluing, and pressing, in which fuel oil is used as the major source of thermal energy.

•Transporting wood from sawmill to marine port. Road transportation is the most common way to move processed wood from sawmill to marine port. Normally, transportation from local sawmill or factory to an international port may be long distance. There is also insufficient information in different local regions, and environmental impact of this stage is difficult to estimate. Some necessary assumptions related to road transportation will be made for further analysis.

•Transporting wood form marine port to Taiwan. In Taiwan, marine transportation is an important part of its economy due to its running business with other countries. Wood material is always transported by cargo ship from foreign regions to Taiwan’s international port. The environmental impact of marine transportation is complicated and difficult to analyse because of the complexity of collecting data in Taiwan. Researchers from other countries have developed a database of international marine environmental impacts, which could be used to calculate the energy consumption and carbon dioxide emissions during long ship journeys when the vessel is loaded with goods.

 

Harvesting & Manufacturing Of Wood

As analysed before, wood harvesting requires simple mechanical tools such as the electric saw, which consumes small amount of energy. Electric power and fuel oil are two major energies for the mechanical forest industry. 

 

Investigations have shown that electricity accounts for 40–50 percent of the industry’s energy needs in a series of mechanical process of sawmilling, chipping, planting, and peeling. Heat is also needed for processes such as drying, gluing, and pressing, in which fuel oil is used as the major source of thermal energy.

 

The manufacturing process of wood from overseas is very different, especially in various regions, and thus the evaluation of environmental impact of this process is very complex. 

 

It is necessary to adopt some possible measures to estimate the environmental impact of wood. Energy consumption of wood manufacture is strongly related to its regional conditions. So, local data for each region is the most essential information required for the evaluation. 

 

In this study, data of energy consumption and carbon dioxide emissions during wood harvesting and manufacturing is collected by literatures from countries such as the US, Canada, Sweden, Austria, and New Zealand. 

 

Since related data is not available in China, Malaysia, Russia, and Brazil, estimative values from the Food and Agricultural Organization (FAO) report are applied in the evaluation.

 

Inland Transportation

Inland road transportation includes two parts: transporting wood from forest region to sawmill and transporting wood from sawmill to marine port. Inland transportation is an important factor that contributes to energy consumption and carbon dioxide emissions during the life cycle of wood. 

 

There is no global average estimative data concerning the environmental impacts of road transportation, and the data of each region differs. Information from the Transport Canada Database is taken as estimative values in the study. 

 

Based on the author’s interviews with truck companies, heavy duty vehicle (HDV, 33,000 lbs) is identified as the main vehicle transporting wood inland. Vehicles lighter than 33,000 lbs are not suitable to carry wood due to their large size and the heavy weight of wood.

 

In order to reduce transportation costs, most sawmills are built to avoid long distance movement from the forest logging area. Sawmill location is based on information from the Sawmill Database, which provides details about the latest and most major sawmills around the world. The distance from sawmills to marine ports differs greatly, and the average distance from sawmill to port is taken as an estimative value in road transportation. 

 

Marine Transportation

Environmental impact of marine transportation cannot be ignored in the assessment. In order to estimate the energy consumption and carbon dioxide emissions of marine transport, the methods used by the Network for Transport & Environment (NTM) are adopted in this study. 

 

NTM is a non-profit organization initiated in 1993 that aims to establish a common base of values on how to calculate environmental performance for various modes of transport. As is known, all ships are individual with different characteristics. The data provided by NTM is not exact for any given ship but comprises values measured and calculated over a great number of ships and engines.

 

The boundary of marine transport routes limits only from port to port. The destination of marine transportation of wood is the port of Kaohsiung, which is the largest international port in Taiwan. There are thousands of vessel companies sailing from foreign countries to Taiwan, and the exact data of vessels is difficult to obtain. 

 

One of the largest vessel companies Evergreen Marine Corp (EMC), which deals with cargo container ships, provides marine information for analysis. Besides, the information of marine routes and transportation distances can be estimated from Marine Traffic.

 

Sustainability Performance Of Importing Wood

Importing wood from Canada, Australia, and New Zealand to Taiwan demands relatively lower amount of energy than it does from other regions. 

 

Specifically, importing wood from Canada (West) demands the lowest amount of energy (2095 MJ/cubic metre), while importing wood form Brazil consumes the highest amount of energy (5356 MJ/cubic metre), because the wood that comes from Brazil involves longer routes by road and marine transportation when compared with other wood resources. 

 

Compared with wood from Canada, the wood that comes from US has relatively higher energy consumption, such as wood from Southeast region (4824 MJ/cubic metre) and from Pacific Northwest region (4343 MJ/cubic metre). 

 

This is because energy consumption in manufacturing wood in US is much higher than that in Canada. On the other hand, it can be also found that there is no great difference of embodied energy when wood is imported from Sweden, China (Northeast and Southwest), and Malaysia, presenting at around 3500 MJ/cubic metre. 

 

Therefore, Canada, Australia, and New Zealand are the most sustainable importing sources for wood used in Taiwan’s construction sector according to energy consumption.

 

Total embodied energy consumption of imported wood to Taiwan (MJ/cubic metre). 

It is interesting to note that the carbon dioxide emissions generated from importing wood from Sweden are significantly lower than those from other regions, although the energy consumed during the importing process is relatively high. 

 

This is because more renewable energy is applied in electricity production in Sweden, thus mitigating carbon emissions in industrial manufacturing process. Wood from the US (Southeast) contributes to the highest amount of carbon dioxide emissions (396 kg/cubic metre), followed by wood from Brazil (337 kg/cubic metre). 

 

The carbon emissions of imported wood from the US to Taiwan vary from different regions, ranging from 260 kg/cubic metre to 396 kg/cubic metre. The carbon dioxide emissions of importing wood are quite similar across regions such as Canada, Australia, and New Zealand due to similar energy consumptions. 

 

In Asian regions, wood from China contributes to higher carbon dioxide emissions than wood from Malaysia, because the portion of fossil fuel accounts for the major part in electricity production, thus leading to higher carbon dioxide emissions. 

 

If construction sector in Taiwan seeks to import wood from overseas with lower carbon dioxide, Sweden, Canada, Australia, and New Zealand would be most sustainable importing sources based on above analysis.

 

Total embodied carbon dioxide emissions of imported wood to Taiwan (kg/cubic metre). 

 

Relative Distributions Of Sustainability Performances 

As for energy consumption, wood harvesting and inland transportation from forest to sawmill show less contribution to most of the regions except Brazil, where the inland transportation from forest region to sawmill contributes to 21 percent of total energy use due to very long trip (around 700 km). 

 

In most of regions (US, Australia, New Zealand, Sweden, China, Malaysia, and Russia), wood manufacturing process accounts for the major energy consumption (from 57 percent up to 82 percent).

 

Relative performance of embodied energy of imported wood to Taiwan. 

 

Relative performance of embodied carbon dioxide emissions of imported wood to Taiwan. 

 

Besides, a long trip of marine transportation also significantly contributes to energy consumption. When wood is imported from US to Taiwan, energy used in marine transportation from four American regions (PSW, SE, INW, and NE/NC) vary from 14 percent to 23 percent. However, if the wood is transported from Canada, the portion of energy consumption is much higher than that in US. 

 

This is because manufacturing process in Canada consumes relatively less energy, while the marine transportation is quite similar to its competitor. 

 

For example, in the case of wood from the east of Canada, marine transportation reaches 45 percent of total energy consumption. Comparatively, the portions of energy consumed in marine transportation are less significant when importing from nearby Asian regions such as Malaysia and China, accounting for less than 10 percent.

 

In terms of carbon dioxide emissions, manufacturing process releases the greatest amount of emissions in most of the regions studied except Sweden, where carbon dioxide emissions in manufacturing process account for only 16 percent, as conventional fossil fuel in primary energy distribution in Sweden in 2014 accounts for nine percent, releasing only small portions of carbon dioxide emissions. 

 

When wood is imported from Sweden, marine transportation accounts for 66 percent of total emissions due to very long transportation distance (20,804 km) and the lower emission level during manufacturing. Wood harvesting and road transportation from forest source to sawmill make a smaller contribution to carbon dioxide emissions (less than 11 percent) in most of the regions in this study. 

 

This finding does not translate to Brazil, as it requires long distance for road transportation. Marine transportation is another major factor that contributes to the carbon dioxide emissions as well. 

 

For example, Marine transportation of wood from North America (the US and Canada) contributes to 14 percent to 45 percent of total carbon dioxide emissions. By contrast, the carbon dioxide emissions of marine transportation of wood from Asian regions (Malaysia and China) are relatively less significant.

 

Crucial Factors

Based on previous analysis, the most crucial factors of sustainability performance of importing wood to Taiwan have been be identified. Although many efforts have been made to collect data in this study, the uncertainties of data could not be avoided due to the changing reality. 

 

Therefore, the author would suggest that among five factors, only a relative percentage of more than 10 percent is to be considered essential in the analysis. This means that if wood is imported to Taiwan for use, the collection of these crucial data becomes necessary for analysing the environmental impact. 

 

Manufacture is a critical factor for all regions, while harvesting is not significant for all. Marine transport is a crucial factor for the most of regions except China and Malaysia.

 

Embodied energy consumption and carbon dioxide emissions are two important indicators for assessing sustainable performance. 

 

The analysis of sustainability performance of imported wood from different regions can provide scientific information and results for building construction professionals in many wood limited countries or regions such as Japan, South Korea, and Taiwan that enable them to select more sustainable wood resources. 

 

The sustainability performance of importing wood from different sources could be influenced by multiple factors. For energy consumption, importing wood form Brazil consumes the highest amount of energy, because the wood that comes from Brazil is involved in longer routes by road and marine transportation when compared to other wood resources. 

 

However, when compared with wood from Canada, the wood that comes from US has relatively higher energy consumption, although the distance between Canada and Taiwan is longer than that between US and Taiwan. 

 

This could be explained by the reason that the energy consumption in manufacturing wood in US is much higher than that in Canada. For the carbon dioxide emission performance, the energy distribution of wood importing source could have a significant influence on sustainable performance. 

 

From the results, it is found that the carbon dioxide emissions generated by importing wood from Sweden are significantly lower than those from other neighbourhood regions like China and Malaysia. This is because more renewable energy is applied in electricity production in Sweden, while the portion of fossil fuel accounts for the major part of electricity production in these Asian regions. Therefore, it is necessary to systematically consider multiple factors when conducting sustainable performance studies.

 

Although the final results of sustainable performance are quite complex, generally, environmental impacts of wood used in construction sector could be minimised by selecting appropriate import regions with shorter transportation distance, as marine transportation contribute a large part of environmental impacts on the lifecycle of wood. 

 

These results could determine whether it is possible to use some wood resources locally for these regions to avoid environmental impacts generated from long distance transportation. This implication could have multiple benefits. 

 

Firstly, environmental impacts due to long journeys can obviously be avoided if the local wood is harvested and used in construction. Secondly, this solution can meet the requirements of sustainability of resource utilisation in a self-sufficient environment, and, in turn, reduce the consumption of wood in other regions, if wood used in construction is available locally. 

 

Finally, it could be helpful to increase the domestic supply of wood if possibility of reusing and recycling wood products in a dominant market could be also taken into consideration. In consequence, the possibility of using local wood resources in a sustainable manner should be reconsidered by the authority in regions with less sufficient wood resources.

 

Although this study has considered embodied energy consumption and carbon dioxide emissions in the sustainability assessment, more indicators could be developed to assess the sustainable wood management in construction industry in future studies. 

 

These include the extent of forest resource, biological diversity, forest health and activity, productive functions for forest resources, protective functions of forest resources, and social-economical functions. These may help to identify whether wood used in construction sector could fulfil the goal of sustainable construction.

 

Rate this item
(0 votes)

FDMAsia About Us

For almost 30 years, FDM Asia has been the publication of choice for woodworking professionals in Asia Pacific, providing the latest news and expert insights of a diverse range of topics including process technologies, furniture production, panels manufacturing, raw materials handling and sustainability issues.

We have one of the most comprehensive woodworking database and e-media programme to assist you in your e-marketing and give you an exclusive opportunity to connect to our 25,152 online subscribers.